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ABSTRACT 
Consumer-grade electroencephalography (EEG) presents promising opportunities for applied 
Brain-Computer Interfaces (BCI). We examine the relationship between neural activity and chess 
move quality using the MUSE 2. Linear mixed-effects modeling identifies significant positive 
correlations between move quality and power in beta and gamma bands. With machine learning, we 
investigate the potential application of these findings towards real-time implicit BCI. Using 
two-class classification with leave-one-out cross-validation across participants, we achieve 54% 
accuracy; average accuracy improves to 60% when considering the best-models per-participant. 
These findings indicate that consumer-grade EEG devices can detect meaningful cognitive variation 
during complex decision-making, and demonstrates potential for using this data for BCI. 
 
INTRODUCTION​
Electroencephalography (EEG) has emerged as a powerful tool in Brain-Computer Interface (BCI) 
research, with established capabilities in measuring cognitive workload [1] and differentiating task 
difficulties in ergonomics and human-computer interaction studies [2]. Recent advances in 
consumer-grade devices have expanded EEG's accessibility beyond clinical settings, enabling 
researchers across diverse fields to leverage this technology [3]. Yet, significant challenges remain 
in bridging the gap between clinical findings, consumer device validation, and practical applications 
[4], particularly in establishing reliable real-time signal processing methods for BCI applications 
[5]. Our research addresses these challenges by employing the MUSE 2, a wireless and portable 
EEG device previously validated for cognitive workload measurement [6,7], to explore its practical 
application in realistic BCI scenarios during chess games. 
 
MATERIALS AND METHODS 
We recruited 17 healthy participants (mean age 20.5 ± 2.03 years, 1 female) to play five 5-minute 
games against a computer opponent with adjustable difficulty (levels 1-8). Participants selected the 
difficulty level of the computer opponent based on their own skill level, and could adjust the 
difficulty by one after each game. Participants played on a local copy of the Lichess open source 
engine [8], using a 13-inch M2 MacBook Air equipped using a mouse. Data was collected from the 
Muse 2 device using the Mind Monitor [9] application, which applies a 60Hz notch filter and 
records delta (0.4-4hz), theta (4-7hz), alpha (8-12hz), beta (13-30hz), and gamma (30-80hz) waves 
at 10Hz [9, 10]. Connection to the Mind Monitor application was not perfect: whenever 
disconnection occurred all moves afterwards for that game were lost. On average, 3.6 games’ worth 
of data were collected per participant (sd 1.15). Samples were filtered to exclude eye-blinks, jaw 
clenches, or invalid connection to the forehead (10% of samples) [9]. The final dataset contained 
EEG data from 1038 moves across 14 participants.  
 
Move quality was evaluated using Stockfish 15 [11]. With the engine, we evaluated the game 
positions both before and after the move in centipawns. We converted these evaluations into win 
probabilities (W) using a logistic function: , where p is the centipawn position  𝑊 = 1.0
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evaluation [12]. Move quality score was defined as the difference between the post-move and 
pre-move win probabilities, measuring deviation from theoretically optimal play. Move quality was 
normalized per-participant by transformation into a categorical variable based on median split, 
dividing the participants’ moves into the Higher Quality and Lower Quality moves.  
 



We focused our analysis on the MUSE device’s prefrontal probes (AF7 and AF8) [9]. We calculated 
the mean and standard deviation within each frequency band per-probe, averaged these statistics 
across probes. We performed statistical modeling in R [13], fitting Linear Mixed-Effects models 
[14] using move quality as a fixed effect and with games nested within participants as random 
effects. Model checks were made for linearity, homogeneity of variance, outliers, and normality 
[15]. Effect sizes are reported as partial epsilon-squared (εp²) [16]; Bonferroni correction is used 
across models. Machine Learning was performed in Python on the same data but with leave-one-out 
cross-validation at the participant level, and utilized Random Forest, Support Vector Machines, 
Quadratic Discriminant Analysis, Linear Discriminant Analysis, K-Nearest Neighbors, Multi-Layer 
Perceptron, and the Extreme Gradient Boosting classifier; ML analysis was done in the scikit-learn 
library [17].  
 
RESULTS 

​
 

Figure 1: Power in EEG bands comparing lower and higher performing chess moves. Significant differences are 
observed in the beta and gamma bands.  

Statistical analysis demonstrated that both beta (F(1,1004.9) = 39.36, p<0.001, εp²=0.04) and gamma 
(F(1,1006.9) = 38.32, p<0.001, εp²=0.05) brain wave activity increased significantly during higher 
quality chess moves. Across ML models, Random Forest models achieved only an average 
accuracy of 54% in distinguishing between move qualities across all participants; however, 
averages across best-models per-participant yielded 60%. High variability across participants and 
models indicates potential for meta-classification techniques, or potentially model-based 
cross-validation on data from a given participant to determine optimal classifier or meta-classifier 
with which to work.  

CONCLUSION: 
This study demonstrates that the Muse 2 device can detect meaningful variations in neural activity 
during a complex cognitive task, and showed consistent increases in beta and gamma band activity 
during higher quality moves. Although variable machine learning results highlight current 
limitations in translating these neural patterns into reliable real-time predictions, high variance 
across participants and models indicates potential for new classification techniques to be applied for 
future interfaces. These findings contribute to our understanding of the potential and constraints of 
consumer EEG devices in BCI applications. 
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